- Thesis Defense: Robustness ...
- Edit Event
- Cancel Event
- Preview Reminder
- Send Reminder
- Other events happening in November 2013
Thesis Defense: Robustness Analysis for Identification and Control of Nonlinear Systems
Speaker:
Mark Tobenkin
, MIT CSAIL, LIDS
Date: Monday, November 25, 2013
Time: 4:00 PM to 5:00 PM Note: all times are in the Eastern Time Zone
Refreshments: 3:45 PM
Public: Yes
Location: 32-G449 (Patil / Kiva)
Event Type:
Room Description:
Host: Russ Tedrake, MIT CSAIL
Contact: Mark M. Tobenkin, mmt@mit.edu
Speaker URL: None
Speaker Photo:
None
Reminders to:
seminars@csail.mit.edu
Reminder Subject:
TALK: Thesis Defense: Robustness Analysis for Identification and Control of Nonlinear Systems
Abstract:
Nonlinear dynamics are at the heart of many engineering and scientific endeavors such as the design and analysis of robotic systems, experimental and theoretical electrophysiology, and computer-aided design of high speed electronics. Modern computing power has revolutionized the role that simulations play in these disciplines, but finding models whose simulations accurately match experimental data on long time horizons remains a challenging task. First, it is crucial to ensure that the identified dynamics are stable, but general techniques for testing stability do not exist for nonlinear models. Second, while it is natural to desire a model whose open-loop simulations match the experimental data, minimization of such simulation errors leads to challenging nonlinear programming problems for both linear and nonlinear models.
This dissertation provides new computational methods for identification and analysis of nonlinear dynamical systems using convex optimization. I provide a framework for system identification extending previous work based on convex parameterizations of stable nonlinear systems and convex upper bounds for simulation error. These existing methodologies generate severely biased estimates in the presence of measurement noise. Two algorithmic improvements are introduced to overcome this problem: (i) an instrumental-variable strategy based on the availability of a pair of repeated experiments, and (ii) a family of tighter upper bounds for simulation error applicable to state-affine systems. The effectiveness of these techniques is examined through application to several experimental and simulated data sets.
Research Areas:
Impact Areas:
Created by Mark M. Tobenkin at Saturday, November 23, 2013 at 3:30 AM.