Gauge Fields in Deep Learning

Speaker: Max Welling , University of Amsterdam

Date: Wednesday, April 24, 2019

Time: 2:00 PM to 3:00 PM

Public: Yes

Location: 32-G449 (Stata Center - Patil/Kiva Conference Room)

Event Type: Seminar

Room Description:

Host: Polina Golland

Contact: Marcia G. Davidson, 617-253-3049,

Relevant URL:

Speaker URL: None

Speaker Photo:

Reminders to:,

Reminder Subject: TALK: Gauge Fields in Deep Learning

Gauge field theory is the foundation of modern physics, including general relativity and the standard model of physics. It describes how a theory of physics should transform under symmetry transformations. For instance, in electrodynamics, electric forces may transform into magnetic forces if we transform a static observer to one that moves at constant speed. Similarly, in general relativity acceleration and gravity are equated to each other under symmetry transformations. Gauge fields also play a crucial role in modern quantum field theory and the standard model of physics, where they describe the forces between particles that transform into each other under (abstract) symmetry transformations.

In this work we describe how the mathematics of gauge groups becomes inevitable when you are interested in deep learning on manifolds. Defining a convolution on a manifold involves transporting geometric objects such as feature vectors and kernels across the manifold, which due to curvature become path dependent. As such it becomes impossible to represent these objects in a global reference frame and one is forced to consider local frames. These reference frames are arbitrary and changing between them is called a (local) gauge transformation. Since we do not want our computations to depend on the specific choice of frames we are forced to consider equivariance of our convolutions under gauge transformations. These considerations result in the first fully general theory of deep learning on manifolds, with gauge equivariant convolutions as the key ingredient.

Joint work with Taco Cohen, Maurice Weiler and Berkay Kicanaoglu

Prof. Dr. Max Welling is a research chair in Machine Learning at the University of Amsterdam and a VP Technologies at Qualcomm. He has a secondary appointment as a senior fellow at the Canadian Institute for Advanced Research (CIFAR). He is co-founder of “Scyfer BV” a university spin-off in deep learning which got acquired by Qualcomm in summer 2017. In the past he held postdoctoral positions at Caltech (’98-’00), UCL (’00-’01) and the U. Toronto (’01-’03). He received his PhD in ’98 under supervision of Nobel laureate Prof. G. ‘t Hooft. Max Welling has served as associate editor in chief of IEEE TPAMI from 2011-2015 (impact factor 4.8). He serves on the board of the NIPS foundation since 2015 (the largest conference in machine learning) and has been program chair and general chair of NIPS in 2013 and 2014 respectively. He was also program chair of AISTATS in 2009 and ECCV in 2016 and general chair of MIDL 2018. He has served on the editorial boards of JMLR and JML and was an associate editor for Neurocomputing, JCGS and TPAMI. He received multiple grants from Google, Facebook, Yahoo, NSF, NIH, NWO and ONR-MURI among which an NSF career grant in 2005. He is recipient of the ECCV Koenderink Prize in 2010. Welling is in the board of the Data Science Research Center in Amsterdam, he directs the Amsterdam Machine Learning Lab (AMLAB), and co-directs the Qualcomm-UvA deep learning lab (QUVA) and the Bosch-UvA Deep Learning lab (DELTA).

Research Areas:

Impact Areas:

See other events that are part of the Machine Learning Seminar Series 2019.

Created by Marcia G. Davidson Email at Wednesday, April 17, 2019 at 10:26 AM.